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tThis paper des
ribes two re
ent innovations related to the 
lassi
 Lan
zos method for eigen-value problems, namely the thi
k-restart te
hnique and dynami
 restarting s
hemes. Combiningthese two new te
hniques we are able to implement an eÆ
ient eigenvalue problem solver. Thispaper will demonstrate its e�e
tiveness on one parti
ular 
lass of problems for whi
h this methodis well suited: linear eigenvalue problems generated from non-self
onsistent ele
troni
 stru
ture
al
ulations.1 Introdu
tionThe Lan
zos method is a very simple and yet e�e
tive algorithm for �nding extreme eigenvaluesof large matri
es. Sin
e it only needs to a

ess the matrix through matrix-ve
tor multipli
ations,the user has the 
exibility of 
hoosing the most appropriate matrix-ve
tor multipli
ation s
hemeto redu
e 
omputer memory usage and the 
omputation time. There is never any need to expli
-itly store the full matrix whi
h 
an be prohibitively large in many ele
troni
 stru
ture 
al
ulations.There are two 
ommon ways of implementing the Lan
zos method depending on whether or not theLan
zos ve
tors are stored. When the Lan
zos ve
tors are not stored, they have to be re
omputedwhen needed for re-orthogonalization or 
omputing eigenve
tors. This s
heme is usually used with-out re-orthogonalization and only to 
ompute eigenvalues. Sin
e there is no re-orthogonalization,the Lan
zos ve
tors will lose orthogonality after a number of steps and the Lan
zos method maygenerate spurious solutions [3, 21℄. Though spurious eigenvalues 
an be e�e
tively identi�ed, how-ever, less Lan
zos steps would be needed if the orthogonality is maintained. If the eigenve
torsare also wanted, the Lan
zos iterations are repeated after the eigenvalues are found. This is asigni�
ant amount of additional work. For the appli
ations under 
onsideration, both eigenval-ues and eigenve
tors are needed, therefore it is more appropriate to store the Lan
zos ve
tors.When the Lan
zos ve
tors are stored, the loss of orthogonality problem 
an be 
orre
ted by re-orthogonalization [11, 12, 16℄ and no spurious eigenvalues are generated. Be
ause ea
h Lan
zosstep generates one ve
tor, a large amount of 
omputer memory may be required to store all theLan
zos ve
tors. If the re-orthogonalization is ne
essary, the time needed to 
arry out a Lan
zosstep in
reases as more Lan
zos ve
tors are generated. For these reasons, the Lan
zos algorithmthat stores the Lan
zos ve
tors is usually restarted after a 
ertain number of steps.The restarted versions often use 
onsiderably more matrix-ve
tor multipli
ations than the non-restarted version to 
ompute the same eigenvalues. In re
ent years, newly developed restartingstrategies have signi�
antly redu
ed the number of matrix-ve
tor multipli
ations used for other1

LBNL-42917



restarted eigenvalue methods. The two most su

essful ones are the impli
itly restarted Arnoldimethod [9, 17℄ and the dynami
 thi
k-restart Davidson method [18, 27℄. Compared to the Arnoldimethod and the Davidson method, the Lan
zos method uses less arithmeti
 operations per step.Therefore we would like to apply these restarting strategies on the Lan
zos method. The impli
itlyrestarted Lan
zos method has been studied elsewhere [2℄ and implemented in ARPACK [9℄. Herewe des
ribe a thi
k-restart Lan
zos method. Be
ause the thi
k-restart pro
edure is only a slightmodi�
ation of the Rayleigh-Ritz pro
edure, it is easier to implement than the impli
itly restartedLan
zos method. More importantly be
ause we have 
ondu
ted detailed analysis of exa
tly howmany Ritz pairs to save during restarting, our implementation of the thi
k-restart Lan
zos methodis 
onsiderably more e�e
tive than ARPACK on most of the eigenvalue problems tested [30℄.Many ele
troni
 stru
ture 
al
ulations result in a non-linear eigenvalue problem where thelowest eigenve
tors, 
orresponding to the ele
troni
 states of the physi
al system, are required.This problem is normally solved by iterating a linearized form of the non-linear problem, to self-
onsisten
y. In these 
ases it is advantageous to extrapolate from previous steps to produ
e a goodstarting guess for the eigenve
tors of the next step in the self-
onsistent iteration. For this reasoniterative eigensolvers that 
an take advantage of a good starting guess su
h as the Davidson method[4℄ and the Conjugate Gradient (CG) method [19℄, are the most 
ommonly used. Sin
e the simpleLan
zos method 
annot take an arbitrary number of starting ve
tors, it is more appropriate forlinear eigenvalue problems. The test problems 
hosen in this paper are 
al
ulations of quantum dotstru
tures with empiri
al pseudopotentials [22, 31℄ resulting in linear eigenvalue problems.The goal of this paper is to introdu
e two new innovations on the Lan
zos method to the readerand show the e�e
tiveness of the improved method through a number of examples. We will 
omparethe new variations of the Lan
zos method against the older variations and demonstrate that thenew methods s
ale well as the number of required eigenvalues in
reases and as the matrix sizein
reases. We will also dis
uss how the Lan
zos method 
omputes the eigenve
tors asso
iated witha degenerate eigenvalue and how to 
hoose appropriate parameters in order to a
hieve the 
orre
tmultipli
ity.Be
ause the algorithm used in this paper is not yet widely known, we state the algorithm and therestarting strategy so that the reader 
an implement their own version of the program. The mainbody of the algorithm is des
ribed in Se
tion 2. A number of restarting strategies are dis
ussed inSe
tion 3. After des
ribing the new algorithm, we present 
omparisons against other versions ofthe Lan
zos method and the s
aling properties of the new methods in Se
tion 4, and dis
uss thequestion of 
omputing degenerate eigenvalues and the workspa
e requirement in Se
tion 5. Some
on
luding remarks are given in Se
tion 6.2 The thi
k-restart Lan
zos algorithmThe thi
k-restart Lan
zos algorithm 
ombines the Lan
zos algorithm with the thi
k-restart te
h-nique to form a new restarted eigenvalue method. It is designed to solve symmetri
 or Hermitianeigenvalue problems of the form, Ax = �x;where A is the matrix, � is an eigenvalue of A and x is the 
orresponding eigenve
tor. The Lan
zoseigenvalue method 
omputes approximate values of � and x whi
h will also be denoted by � andx. Typi
ally as more Lan
zos steps are performed, the approximate values be
ome 
loser to theexa
t values. The e�e
tiveness of the method 
an be measured by the time it needs to 
omputethe solutions to a desired level of a

ura
y. 2



The Lan
zos method for eigenvalue problems has two 
on
eptually distin
t parts, one to 
on-stru
t the Lan
zos basis and the other to 
ompute the approximate solutions using a proje
tionmethod usually the Rayleigh-Ritz proje
tion [12℄. The approximate eigenvalues and eigenve
tors
omputed using the Rayleigh-Ritz proje
tion are 
ommonly referred to as the Ritz values and theRitz ve
tors [12℄ and the ve
tors of the Lan
zos basis are also known as the Lan
zos ve
tors. Inthe restarted Lan
zos algorithm the two basi
 steps of 
onstru
ting a basis and performing theproje
tion are 
arried out as usual. However, after a spe
i�ed number of Lan
zos ve
tors are built,a linear 
ombination of the basis ve
tors is sele
ted to start the Lan
zos algorithm again by usingthe same workspa
e to store the new basis ve
tors. The thi
k-restart Lan
zos algorithm [29℄ is aparti
ular version of the restarted Lan
zos method. It di�ers from the simple restarted Lan
zosmethod in that it 
an save an arbitrary portion of the 
urrent Lan
zos basis. This 
exibility 
an bee�e
tively used to enhan
e the performan
e of the restarted Lan
zos method as demonstrated bythe impli
itly restarted Lan
zos method [2℄ whi
h is mathemati
ally equivalent to the thi
k-restartLan
zos method[29℄. Compared to the impli
itly restarted Lan
zos method, the thi
k-restart Lan
-zos method is simpler in two ways. The thi
k-restart pro
edure is only a slight modi�
ation of theRayleigh-Ritz pro
edure and therefore it is simpler than the impli
it restart pro
edure. The im-pli
itly restarted Lan
zos method needs a post-pro
essing step to 
ompute the eigenve
tors afterthe eigenvalues are 
omputed. The thi
k-restart Lan
zos method does not need this step [17, 29℄.The thi
k-restart Lan
zos method des
ribed next is suitable for 
oating-point arithmeti
 im-plementation. The main di�eren
e between this one and the one for exa
t arithmeti
 is that thisone has a re-orthogonalization step. The re-orthogonalization s
heme shown here in
ludes a lo
alre-orthogonalization and a global re-orthogonalization. It guarantees that the Lan
zos ve
tors areorthogonal to ma
hine pre
ision (�) and 
oeÆ
ients �i and �i are a

urate to the order of �kAk.This ensures no spurious solutions are 
omputed and it allows us to 
ompute both eigenvalues andeigenve
tors simultaneously.Assuming there is enough 
omputer memory to store m+ 1 Lan
zos ve
tors, the thi
k-restartLan
zos algorithm progressively builds its basis ve
tors as follows.Algorithm 1 InitializationTo start solving a new eigenvalue problem, take a starting ve
tor, normalize it and store theresult in q1 (k = 0).When restarting, the quantities �1; : : : ; �k, �1; : : : ; �k, q1; : : : ; qk and qk+1 shall satisfyAqi = �iqi + �iqk+1; i = 1; : : : ; k: (1)IterateFor i = k + 1; : : : ;m,1. qi+1 = Aqi,2. �i = qTi qi+1,3. orthogonalization:If i > k + 1, qi+1  qi+1 � �iqi � �i�1qi�1; (2)else qi+1  qi+1 � �iqi � kXj=1�jqj: (3)3



4. re-orthogonalization:� If i > k + 1, � = �2i + �2i�1, else � = �2i +Pkj=1 �2j .� If qTi+1qi+1 � �, perform the lo
al re-orthogonalizationqi+1  qi+1 � qiqTi qi+1 � qi�1qTi�1qi+1; (4)else if qTi+1qi+1 � �2�, perform the global re-orthogonalizationqi+1  qi+1 � iXj=1 qjqTj qi+1; (5)else, repla
e qi+1 with a random ve
tor that is orthogonal to [q1; : : : ; qi℄.� Before updating qi+1 using Equation 4 or 5, repla
e �i by �i+ qTi qi+1. However, donot modify �i if qi+1 is repla
ed by a random ve
tor.5. normalization: �i = kqi+1k, qi+1  qi+1=�i.If qi+1 is a random ve
tor, set �i to zero after qi+1 is normalized.The se
ond part of the algorithm performs the Rayleigh-Ritz proje
tion. As in the usualproje
tion step of any eigenvalue method, it 
omputes the Ritz values and the Ritz ve
tors. Themain di�eren
e is that it also prepares the quantities involved in Equation 1 to allow the thi
k-restart Lan
zos algorithm to restart with an arbitrary number of ve
tors. We will only give thebasi
 pro
edure in this se
tion and leave the dis
ussion on exa
tly how may ve
tors to save, i.e., therestarting strategies, to the next se
tion. For 
onvenien
e of des
ribing the restarting pro
edure,we de�ne Qm � [q1; : : : ; qm℄ and Tm � QTmAQm. No 
omputation is required to generate Tmbe
ause it 
an be assembled from �1; : : : ; �m and �1; : : : ; �m�1. Be
ause the Lan
zos ve
tors Qmare orthogonal to ma
hine pre
ision in the pro
eeding algorithm, the matrix Tm is a

urate as well.This in turn ensures the Ritz values and the Ritz ve
tors are a

urate and Equation 1 is satis�edto ma
hine pre
ision.
Tm = 0BBBBBBBBBBBB�

�1 �1. . . ...�k �k�1 � � � �k �k+1 �k+1�k+1 �k+2 . . .. . . . . . �m�1�m�1 �m
1CCCCCCCCCCCCA : (6)

Algorithm 2 Restarting s
heme1. Find all eigenvalues and eigenve
tors of Tm, TmY = Y D, where the 
olumns of Y are eigenve
-tors and the diagonal elements of D are the eigenvalues. The Ritz values are di;i; i = 1; : : : m.2. Choose k Ritz values to be saved, denote the Ritz values as �1; : : : ; �k and renumber the
orresponding eigenve
tors of Tm as y1; : : : ; yk.3. Let Yk � [y1; : : : ; yk℄, q̂k+1 = qm+1 and repla
e the �rst k 
olumns of Qm with QmYk, i.e.,Q̂k = QmYk. The 
orresponding �̂i and �̂i are de�ned as:�̂i = �i; �̂i = �mym;i; i = 1; : : : ; k: (7)4



In the a
tual implementation, the quantities Q̂k+1, �̂i and �̂i, o

upy the same storage as the
orresponding quantities Qk+1, �i and �i. We distinguish them here only to make 
lear what arenew quantities to be used in the next Lan
zos iteration and what are old quantities to be dis
arded.It is easy to verify that Q̂k+1, �̂i and �̂i satisfy Equation 1 [29℄, whi
h means that they 
an beused to restart Algorithm 1. When entering Algorithm 1 for the �rst time, it is hard to satisfyEquation 1 with k > 0. Thus the thi
k-restart Lan
zos method is usually started initially with onlyone ve
tor. It is easy to implement a blo
k version of the above algorithm, in whi
h 
ase, a blo
kof starting ve
tors 
an be used.What makes the above algorithm di�erent from the naive expli
it restarted Lan
zos methodis that k is signi�
antly larger than one. When k is set to one during the restarting phase, thethi
k-restart Lan
zos algorithm redu
es to a simple expli
itly restarted Lan
zos algorithm. Theexpli
itly restarted Lan
zos algorithm is usually e�e
tive in �nding one extreme eigenvalue. Onthe other hand, saving a large number of ve
tors when restarting as in the thi
k-restart Davidsonmethod and the impli
itly restarted Arnoldi method have been shown to be e�e
tive in �nding afew eigenvalues [2, 18, 27℄. Methods that save a large portion of the existing basis also work wellwhen the maximum basis size m is 
lose to the number of eigenvalues 
omputed. For this reason,the ability to restart with an arbitrary number of Ritz ve
tors is an important property of the newmethod.So far we have des
ribed all implementation details of the new algorithm ex
ept step 2 ofthe restarting pro
edure and how to perform 
onvergen
e tests. Typi
al 
onvergen
e tests forsymmetri
 eigenvalue problems use either residual norms or estimated errors in the eigenvalues. Inthe experiment reported later, we de
lare a Ritz pair 
onverged if its residual norm is less than10�6, krik = j�̂ij < 10�6. The restarting strategies will be dis
ussed in the next se
tion.3 Restarting strategiesTwo of the 
ru
ial de
isions to be made during the thi
k-restart Lan
zos algorithm are whi
h Ritzpairs to save and exa
tly how many. Based on the analyses of Morgan [10℄, saving the Ritz valuesnear the wanted eigenvalues 
ould enhan
e the 
onvergen
e rate of the restarted methods. Thesaved Ritz ve
tors may not be a

urate approximations to their 
orresponding eigenve
tors, butthey approximately de
ate the spe
trum, in
rease the separation between the wanted eigenvalueand the rest of the spe
trum and in
rease the 
onvergen
e rate of the restarted Lan
zos method.Sin
e we only use the Lan
zos method to 
ompute extreme eigenvalues, the Ritz pairs saved arethose with the largest Ritz values and the smallest Ritz values. The remainder of this se
tiondes
ribes our attempt to identify exa
tly how many Ritz pairs should be saved. There are otherarguments that 
an be used to guide the design of restarting s
hemes. A 
omprehensive review
an be found elsewhere [30℄, in this se
tion we will only des
ribe two restarting strategies based onapproximate de
ation.The resear
h work that is more 
losely related to this one is the dynami
 thi
k-restart s
hemeused in the dynami
 thi
k-restart Davidson method [18℄. In this paper the de
ision of how manyve
tors to save is based on maximizing the e�e
tive gap ratio. Assuming the m Ritz pairs are inas
ending order of the Ritz values, if we are to save Ritz pairs 1; : : : ; kl and kr + 1; : : : ;m, thee�e
tive gap ratio for 
omputing the smallest eigenvalue is de�ned to be
 = �kl � �1�kr+1 � �1 :When 
omputing more than one eigenvalue, the gap ratio is initially 
omputed with the outermost5



Ritz value as the referen
e. After the outermost eigenvalue has rea
hed 
onvergen
e, the e�e
tivegap ratio 
 is 
omputed with the next eigenvalue as the referen
e. For example, if the smallestRitz value has 
onverged, the e�e
tive gap ratio is 
omputed as 
 = (�kl � �2)=(�kr � �2). Thereferen
e Ritz value serves a similar role as the target in the Davidson method [5℄ and we shall also
all it the target in this paper.Typi
ally, the 
omputed Ritz values are never exa
tly identi
al even if the 
orresponding eigen-values are identi
al. In these 
ases, 
 is a monotoni
 fun
tion if either kl or kr is �xed. The e�e
tivegap ratio in
reases as the di�eren
e between kl and kr de
reases. For this reason, the maximum 
 isalways a
hieved when kr = kl+1. This is usually not a good 
hoi
e sin
e it requires one to performRayleigh-Ritz proje
tion and 
ompute m�1 Ritz pairs after every matrix-ve
tor multipli
ation. Inpra
ti
e, saving m� 1 Ritz ve
tors often yields smaller residual norm redu
tion per matrix-ve
tormultipli
ation than saving m=2 Ritz pairs. To understand this, we noti
e that the de�nition ofthe e�e
tive gap ratio 
 is only a

urate if the Ritz values �1; : : : ; �kl are 
lose to the kl smallesteigenvalues and �kr+1; : : : ; �m are 
lose to the m� kr largest eigenvalues. Sin
e m is mu
h smallerthan the size of matrix A as kl be
omes 
lose kr, the above 
onditions are not satis�ed and 
 issigni�
antly larger than the a
tual e�e
tive gap ratio.To prevent an over-aggressive 
hoi
e of kl or kr, resear
hers have previously 
hosen to enfor
ethe 
ondition of kr � kl+3 [18℄. After extensive testing, we found that the following restri
tion givesmu
h better timing results for the restarted Lan
zos method, kr � kl+min(m�neig; 2(m�n
)=5),where m is the maximum basis size, neig is the number of eigenvalues to be 
omputed, n
 is thenumber of desired eigenvalues that have 
onverged already. In a
tual implementation, we only needto 
onsider kr = kl +min(m� neig; 2(m� n
)=5) when performing the sear
h for the best 
. Thisleads to a simpler sear
hing algorithm than in the previous implementation.If the e�e
tive gap ratio 
 is a

urate, after ea
h Lan
zos step, the residual norm of the targeteigenvalue should de
rease by a fa
tor that is proportion to e�
 [10℄. Based on this, the abovedynami
 restarting s
heme maximizes the expe
ted residual norm redu
tion during ea
h Lan
zosstep. An alternative approa
h is to 
onsider maximizing the residual norm redu
tion for the entirerestarted loop. If k Ritz pairs are saved, the Lan
zos algorithm 
an pro
eed m � k step beforerestarting. The residual norm is expe
ted to de
rease by a fa
tor proportional to e�(m�k)
 . Tomaximize the residual norm redu
tion of the next restarted loop, we need to maximize �,� � (m� k)
:Sin
e � is not a monotoni
 fun
tion like 
, to �nd its maximum value, we need to 
ompare allpossible 
hoi
es of kl and kr. Our tests show that kr � kl +min(m � neig; 2(m � n
)=5) is also areasonable restri
tion on the sear
h range for this s
heme.It is possible to 
onstru
t more dynami
 restarting s
hemes based on either empiri
al observationor other heuristi
s. However, through our tests, we have found that the above two s
hemes workwell for the eigenvalue problems from ele
troni
 stru
ture 
al
ulations studied in this paper. Moredetailed studies of various dynami
 restarting heuristi
s 
an be found elsewhere [30℄.4 Timing resultsIn this se
tion, we will use ele
troni
 stru
ture 
al
ulations of semi
ondu
tor nanosystems to demon-strate the e�e
tiveness of our new method. The systems 
ontain 512 to 250,000 atoms, thus farbeyond the range of ab initio 
al
ulations. To des
ribe the ele
troni
 stru
tures of su
h large sys-tems, the empiri
al pseudopotential has been used. In this s
heme [24℄, the total potential of the6



Table 1: Test problems.# of # ofname atoms plane-waves des
riptionInGaP512 512 6603 512-atom InGaP semi
ondu
tor alloyInGaAs9k 9000 137919 9000-atom InAs quantum dot systemInGaAs93k 93000 1342479 93000-atom InAs quantum dot systemInGaAs250k 250000 3683087 250000-atom InAs quantum dot systemsystem is 
onstru
ted from the superposition of atomi
 s
reened pseudopotentials v�(r) of atomtype �. As a result, the Hamiltonian of the system 
an be written as:Ĥ = �12r2 +XR� v�(r�R�) (8)where fR�g are the atomi
 positions of atom type �, whi
h are obtained via a valen
e for
e �eld
al
ulation [14℄. The empiri
al pseudopotential v�(r) is �tted to bulk band stru
tures and defor-mation potentials. The ele
troni
 stru
ture of the system is obtained by solving the S
hrodinger'sequation Ĥ (r) = � (r); (9)where the wavefun
tion  (r) is expanded using a plane wave basis.This non-self
onsistent empiri
al pseudopotential s
heme has been used to study quantum wells,superlatti
es, disordered superlatti
es, quantum wires, 
olloidal quantum dots, embedded quantumdots and 
omposition modulations in alloys. Ex
ellent agreements with the experiment have beenobtained for single parti
le levels [25℄, ex
hange splitting [7℄, opti
al absorption spe
tra [23℄ andthe magnitudes of �-X 
oupling [20℄.As in most ele
troni
 stru
ture 
al
ulations of semi
ondu
tor materials, the eigenvalues of thematri
es fall into two distin
t groups, the smaller ones form a group known as the valen
e bandand the larger ones the 
ondu
tion band. Typi
ally, the eigenvalues of interests are those nearthe band gap be
ause they are dire
tly related to observable ele
troni
 properties [8℄. Using theempiri
al pseudopotential s
hemes, it is possible to dire
tly 
ompute these eigenvalues and their
orresponding eigenve
tors without 
omputing all the valen
e band states. Sin
e the goal of thispaper is demonstrate the 
apability of the eigenvalue method, we have de
ided to only report thetiming results for 
omputing a number of lowest 
ondu
tion band states. In the 
ases where thevalen
e band states are also 
omputed, we observe similar performan
e 
hara
teristi
s as reportedhere.Brief des
riptions of the test problems used are list in Table 1. All InAs quantum dots listedare embedded in a GaAs latti
e matrix. Let H denote the dis
rete form of the Hamiltonian givenby the empiri
al pseudopotential method. We 
ompute the 
ondu
tion band states by 
omputingthe smallest eigenvalues of (H � Eref )2 [22℄ with Eref 
hosen to be �4:4eV whi
h is in the bandgap and is near the top of the gap. The matrix H is Hermitian. The eigenve
tors are representedas plane-waves and all 
al
ulations are done at the gamma point. Be
ause of the gamma pointsymmetry, only half of the plane-wave 
oeÆ
ients need to be stored. The number of plane-wavesreported in Table 1 are the number of plane-wave 
oeÆ
ients that are a
tually stored in 
omputermemory. 7



Table 2: Time (se
onds) used to �nd 5 lowest 
ondu
tion states of InGaP512.method MATVEC time (se
)PLANSO 2578 473.6PLANSO-lo
k > 20000 > 530max 
-3 3512 109.7max 
 2936 84.3max � 2737 78.0Timing results report here are obtained on a massively parallel 
omputer, the Cray T3E 900,lo
ated at National Energy Resear
h Super
omputer Center1. The matrix-ve
tor multipli
ationuses parallel, three dimensional FFTs optimized for the Cray T3E [26℄.Our �rst set of tests is performed on the smallest test problem, InGaP512. It is used toidentify the restarting s
heme that works well for this type of problems. Table 2 shows the time(se
onds) used by a number of di�erent Lan
zos methods on 8 Pro
essing Elements (PE) of theT3E. In addition to the thi
k-restart Lan
zos method, we also used a pa
kage 
alled PLANSO[28℄ in two di�erent ways. The PLANSO pa
kage implements the Lan
zos method with partial re-orthogonalization [12, 16℄. The row headed by PLANSO uses PLANSO without restarting. Be
ausethis is a very small test problem, we are able to store as many (2578) Lan
zos ve
tors as ne
essaryto 
ompute the �ve smallest eigenvalues of (H � Eref )2. For larger matri
es, the non-restartedLan
zos method usually requires more memory than is available on the T3E thus, it is not a widelyavailable option. The other four methods ea
h store 25 Lan
zos ve
tors. PLANSO-lo
k representsa 
ommon way of restarting the Lan
zos algorithm. The program has allo
ated enough spa
e tostore 25 Lan
zos ve
tors. When this workspa
e is �lled, the Rayleigh-Ritz proje
tion is invokedto 
ompute �ve approximate solutions. If any of them have 
onverged, it will be lo
ked and onlyused in orthogonalizing new Lan
zos ve
tors. We 
an either restart the Lan
zos method by takingone of the Ritz ve
tors or taking a linear 
ombination of the Ritz ve
tors. However, neither ofthe two were su

essful in rea
hing desired a

ura
ies within 20000 matrix-ve
tor multipli
ations.The 530 se
onds re
orded in Table 2 is the time used to run the algorithm for 20000 steps (20000matrix-ve
tor multipli
ations).The last three rows of Table 2 are from using the thi
k-restart Lan
zos method with di�erentrestarting strategies. Row three (max 
-3) uses the dynami
 restarting s
heme used earlier [18℄whi
h always saves m�3 ve
tors when restarting. Row four (max 
) shows the time used when thethi
k-restart Lan
zos method uses our new implementation to maximize the e�e
tive gap ratio 
.The main di�eren
e between these two is that less Ritz pairs are saved in the latter one. Be
ause it
omputes less Ritz ve
tors, the restarting pro
ess is 
heaper than before. In addition, ea
h restartloop 
an 
arry out more matrix-ve
tor multipli
ations and therefore generate more new informationfor the subsequent Rayleigh-Ritz proje
tion. This leads to better approximate solutions with thenewer s
heme. In this parti
ular example, 3512 Lan
zos steps are taken with the former restartingstrategy and 2936 steps, or, 16% less steps, are used with the latter strategy, and 23% less time isneeded using the latter one. The time used by the Lan
zos method with the strategy of maximizingresidual norm redu
tion of the whole restarted loop (max �), see last row of Table 2, is the smallestin the table. It uses almost 30% less time than restarting with the (max 
 � 3) method and it issigni�
antly better than the naive restart s
heme (PLANSO-lo
k).1NERSC 
an be a

essed through the web at http://www.ners
.gov.8
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Figure 1: Time (se
onds) used to 
ompute di�erent numbers of 
ondu
tion band states of InGaAs9k.Earlier, we mentioned that the restarted Lan
zos methods use more iterations than the non-restarted versions that perform re-orthogonalization. Sin
e ea
h Lan
zos iteration needs one matrix-ve
tor multipli
ation, the data shown in Table 2 
on�rms the observation. However, the Lan
zosmethod using the new restarting strategies needs less iterations than using the older strategies.In fa
t, the thi
k-restart Lan
zos method that maximizes � only uses six per 
ent more iterationsthan PLANSO. However, it only uses one sixth of the time of PLANSO. This di�eren
e in timeis mostly due to the di�eren
e in time spend in re-orthogonalization. PLANSO saves all Lan
zosve
tors it ever 
omputed, when it performs a re-orthogonalization it orthogonalizes against all ofthem. Ea
h re-orthogonalization is very expensive near the end of the iterations. The restartedLan
zos method only saves a small number of ve
tors so that ea
h re-orthogonalization is mu
h
heaper. Even though it uses more matrix-ve
tor multipli
ations and more re-orthogonalizations itstill uses signi�
antly less time.The timing results shown in Table 2 are fairly representative of other tests we have 
ondu
tedon this type of eigenvalue problems. In many 
ases, the new restarting s
heme of maximizing � ismore e�e
tive than others. For this reason, we will only show results using this restarting strategywith the thi
k-restart Lan
zos method, in the rest of this paper. Next, we will show how the newmethod s
ales with the number of eigenvalues and the matrix sizes.Figure 1 shows the time used to 
ompute di�erent numbers of 
ondu
tion band states of theInGaAs9k test problem on 32 pro
essors of the Cray T3E. The eigenvalues and eigenve
tors of(H � Eref )2 are 
omputed using the thi
k-restart Lan
zos method that tries to maximize � whenrestarting. When 
omputing neig eigenvalues, the Lan
zos basis size is m = neig + 50. In otherwords, the timing results shown in Figure 1 are generated by allowing the Lan
zos method to usethe �xed amount of workspa
e in addition to the spa
e required to store the eigenve
tors. The line9
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Figure 2: Aggregate time (se
onds) used to 
ompute 
ondu
tion band states of di�erent size testproblems.Table 3: Elapsed time (se
onds) used to 
ompute �ve 
ondu
tion band states of the test problems.name m # of PE MATVEC timeInGaP512 25 8 2737 78.0InGaAs9k 50 32 5458 1096.2InGaAs93k 100 64 4021 8021.8InGaAs250k 200 256 3107 3782.4going through the data points represents a linear regression of the log of time versus the log of neigand the slope indi
ates that to 
ompute twi
e as many eigenvalues and eigenve
tors the restartedLan
zos method used about 60 per 
ent more time (t / n0:7eig). The exa
t di�eren
e in time isa fun
tion of the spe
trum distribution as well as the method used to 
ompute the eigenvalues.Given a di�erent type of eigenvalue problem, the exa
t s
aling fa
tor may 
hange. Here we o�eran intuitive explanation for the sub-linear s
aling observed here and a more pre
ise analysis 
an befound elsewhere [10℄. While 
omputing �1 and x1, the thi
k-restart s
heme also saves the nearbyRitz pairs . When �1 and x1 rea
h 
onvergen
e, �2 and x2 are nearly 
onverged too. After the �rsteigenvalue is 
omputed, mu
h less time may be needed in order to 
ompute the se
ond one.The se
ond type of s
aling studied here is to see how the new method behaves when the problemsize in
reases. Figure 2 shows the aggregate time used by the thi
k-restart Lan
zos method to solvethe di�erent sized empiri
al pseudopotential 
al
ulations. All four problems listed in Table 1 areused. The time shown in the �gure is the aggregate time used by all pro
essors to 
ompute the �velowest 
ondu
tion band states. Table 3 shows the number of pro
essors and the elapsed time. As10



the problem size in
reases, we use more pro
essors and larger Lan
zos bases. The line in Figure 2is a linear regression of the data, more pre
isely, the log of time versus the log of problem size, andits slope indi
ates a s
aling fa
tor of roughly of 1:2, i.e., the aggregate time used is proportional ton1:2, where n is the number of plane-wave bases used. The time used by the Lan
zos method growsfaster than linear be
ause most of its 
omponents s
ale super-linearly. For example, the time toapply the Hamiltonian on a ve
tor s
ales as n log(n), the Gram-S
hmidt pro
edure used to performre-orthogonalization s
ales as mn, and the time needed to 
ompute k Ritz ve
tors during restartingpro
edure s
ales as kmn. In addition, as more pro
essors are used there is more 
ommuni
ationoverhead whi
h is also 
ontributing to the total time growing faster than linear. Of 
ourse, asthe problem size 
hanges, the spe
trum also 
hanges whi
h a�e
ts the total time be
ause di�erentnumbers of Lan
zos steps are needed. Typi
ally, as problem size in
reases, more steps are neededto 
ompute the same number of eigenvalues, and therefore more time will be used.We have also performed a series of tests by dire
tly 
omputing the smallest eigenvalues of H.The s
aling fa
tors observed for these 
al
ulations were 
lose to those observed for 
omputing the
ondu
tion band edge states. On this set of test problems, the thi
k-restart Lan
zos method s
aleswell with both the number of eigenvalues and the matrix size. Many eigenvalue problems fromele
troni
 stru
ture 
al
ulations have similar 
hara
teristi
s to the test problems and we expe
t thethi
k-restart Lan
zos method to work well for these 
ases.5 Quality of solutions and workspa
e requirementIn the previous se
tion we have demonstrated that the new method uses less time than some of theolder versions of the Lan
zos method and the new one s
ales well as the problem size in
reases. Thisse
tion addresses two issues that worry the appli
ation programmers parti
ularly those who performele
troni
 stru
ture 
al
ulations: the Lan
zos method is not able to 
ompute all eigenve
tors of adegenerate eigenvalue and it requires more workspa
e than other methods su
h as CG.Ele
troni
 stru
ture 
al
ulations often give rise to degenerate or near degenerate eigenvaluesand it is 
ru
ial that all eigenve
tors are found. In exa
t arithmeti
, the Lan
zos method 
an only
ompute one eigenpair from ea
h degenerate set. In order to reliably 
ompute multiple eigenve
torsof a degenerate eigenvalue, one either uses a blo
k version of the Lan
zos method or adds lo
king tothe standard Lan
zos method. To see how the thi
k-restart Lan
zos method 
omputes degenerateeigenvalues, we start by examining its 
onvergen
e history.Figure 3 shows the 
onvergen
e history of solving the InGaP512 test problem whi
h has higherdegenera
y than the others. The top plot shows the �ve smallest Ritz values of (H � Eref )2 (innatural units: Rydberg2) and the bottom plot shows their 
orresponding residual norms. Initially,the �ve smallest Ritz values are distin
t. After about 700 Lan
zos steps, the two smallest Ritzvalues have 
onverged to the two smallest eigenvalues but the residual norms are only of the orderof 10�5. After about 1400 steps, the third Ritz value drops below the se
ond one and approa
hes thesmallest one. This indi
ates that the se
ond eigenve
tor 
orresponding to the smallest eigenvalueof (H �Eref )2 has been identi�ed. After about 2200 steps, the third smallest Ritz value 
onvergesto the �rst two and the third eigenve
tor of the smallest eigenvalue appears. It takes roughly thesame number of Lan
zos steps to identify one eigenve
tor 
orresponding to the smallest eigenvalueof (H�Eref)2. In this 
ase, about 700 Lan
zos steps are needed to identify ea
h eigenve
tor. Similarobservation have also been made in the 
ase where the Lan
zos algorithm is used with the partialre-orthogonalization but without restart, see Figure 4. Previously, similar 
onvergen
e history hasbeen observed in Lan
zos methods without re-orthogonalization [6, 21℄. However, the di�eren
e isthat without re-orthogonalization the Lan
zos method repeatedly generates the same eigenve
tor11
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Figure 3: The 
onvergen
e history of the thi
k-restart Lan
zos method.while with re-orthogonalization the eigenve
tors 
omputed are distin
t. Our explanation of thesimilarities is as follows. Be
ause of the 
oating-point round-o� error, the Lan
zos basis is likely to
ontain a small 
omponent in the dire
tion of any eigenve
tor. It takes the Lan
zos method aboutthe same number of steps to 
ompute ea
h eigenve
tor be
ause the 
onvergen
e rates are di
tatedby the eigenvalues whi
h are the same for di�erent eigenve
tors of a degenerate eigenvalue. Inaddition, the initial starting points 
an be regarded as the same for most eigenve
tors sin
e everyone, ex
ept the �rst, starts as a round-o� error. Note that lo
king is not used in generating eitherFigure 3 or 4.The above arguments show that the thi
k-restart Lan
zos method is almost 
ertain to �nd alleigenve
tors of a degenerate eigenvalue. To ensure that no eigenve
tor is missed in the solution, wesuggest two strategies, to 
ompute more eigenvalues than needed and to ask for more a

ura
y thanTable 4: The smallest �ve Ritz values of (H � Eref )2 
omputed when asking for di�erent neig(krik < 10�5, m = 25). neig MATVEC time �1 �2 �3 �4 �5(se
) (�10�4)5 2144 60.8 4.1 4.1 5.1 5.1 5.78 2123 63.4 4.1 4.1 5.1 5.1 5.79 3575 107.4 4.1 4.1 4.1 5.1 5.112
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Figure 4: The 
onvergen
e history of the Lan
zos method without restart.needed. From Figure 3 and 4, we 
an identify �ve distin
t horizontal lines in the Ritz value historyand ea
h of the lines represents an eigenvalue of (H �Eref )2. If they were simple eigenvalues, the�ve smallest eigenvalues would be 4:1 � 10�4, 5:1 � 10�4, 5:7 � 10�4, 6:1 � 10�4, and 9:7 � 10�4.Table 4 shows the �ve smallest Ritz values 
omputed when di�erent number of eigenvalues arerequested. As more and more eigenvalues are requested, the �ve smallest Ritz values be
ome 
loserand 
loser to the �ve smallest eigenvalues. When requesting nine eigenvalues, the �ve smallestones displays the 
orre
t degenera
y. Table 5 shows how the �ve smallest Ritz values 
hange asthe toleran
e 
hanges. In this parti
ular 
ase, we need to set � to something less than 10�5 inorder to get the 
orre
t solutions. The time to generate the solutions with the 
orre
t degenera
yare within 20% of ea
h other in Table 4 and 5. This indi
ates that the two s
hemes are almostequally e�e
tive. Both s
hemes need additional resear
h to make them more rigorous. We o�er thefollowing rule-of-thumb for 
hoosing parameters:� when 
hoosing the option of 
omputing more eigenvalues than needed, 
ompute at least �vemore eigenvalues or if 
omputing a large number of eigenvalues 
ompute 10% more;� when using the residual toleran
e as the 
ontrol, make sure the value of � is less than p�kAk,where � is the ma
hine pre
ision and kAk is the two-norm or Frobenius norm of the matrix.Between the two s
hemes, we believe the se
ond one, 
ontrolling � , is more e�e
tive. This isbased on the observation that when all eigenve
tors of a degenerate eigenvalue are identi�ed theresidual norms de
rease rapidly and monotoni
ally. This means that requiring addition a

ura
ydoes not 
ost a signi�
ant amount of extra time. In Table 5, � = 10�7 and � = 10�8 both lead tothe 
orre
t solutions, but requiring � = 10�8 only takes 5% more time than requiring � = 10�7,13



Table 5: The smallest �ve Ritz values of (H �Eref )2 
omputed when di�erent residual toleran
esare used (krik < � , m = 25).� MATVEC time �1 �2 �3 �4 �5(se
) (�10�4)10�3 712 20.3 4.1 5.1 6.1 9.7 15.010�4 1979 56.5 4.1 4.1 5.1 5.1 5.710�5 2144 60.8 4.1 4.1 5.1 5.1 5.710�6 2737 78.0 4.1 4.1 4.1 5.1 5.110�7 2956 84.4 4.1 4.1 4.1 5.1 5.110�8 3109 88.5 4.1 4.1 4.1 5.1 5.1Table 6: Time (se
onds) used to 
ompute the �ve lowest 
ondu
tion band states of InGaAs9k usingdi�erent size bases. m 50 60 75 100 200time 1096.2 1040.5 1063.1 1107.2 1299.2similarly requiring � = 10�7 only needs 8% more time than requiring � = 10�6. There are many
ases where two eigenvalues are distin
t but are near to ea
h other, e.g., eigenvalue 5:7 � 10�4and 6:1 � 10�4, where the Lan
zos method may have similar diÆ
ulty to 
omputing degenerateeigenvalues. The two s
hemes suggested here should be reasonable approa
hes to deal with this
ase as well.One parameter the user needs to 
hoose when using a restarted Lan
zos method is the basissize, m. Next we will show that it is reasonably easy to pi
k a good value for m. Table 6 showsthe time required with di�erent m to 
ompute the �ve lowest 
ondu
tion band states. From thetable we see that the di�eren
e in time 
aused by di�erent m is relatively small 
ompared tothe di�eren
e between using the thi
k-restart Lan
zos method and other versions of the Lan
zosmethod, see Table 2. Typi
ally, when m is small, as m in
reases, the time de
reases. After min
reases to the optimal value, the minimum time is a
hieved. If m in
reases further, the timein
reases slowly as shown in Table 6. The user usually has to perform a small number of testsin order to identify a reasonable m to use. For 
omputing neig eigenvalues and eigenve
tors, wesuggest testing m = neig + 10 and m = neig + 20. If one of the two test 
ases fail to 
omputethe solutions in a reasonable amount of time or the larger basis size works 
onsiderably betterthan the smaller one, a even larger m should be used. The basis sizes reported in table 3 
an beused as a referen
e for solving similar types of problems. However, the values reported here areprobably larger than ne
essary if one is to 
ompute the smallest eigenvalues of H rather than thoseof (H �Eref )2.One of the 
ommon 
omplaints against the Lan
zos method is that it uses more workspa
e thanCG. This is true in some 
ases. However, be
ause a larger workspa
e, i.e., a largerm, often leads to afaster 
onvergen
e rate, it is worthwhile to use more workspa
e if there is enough memory available.In addition, the thi
k-restart Lan
zos method works well with a 
onstant amount of workspa
e asthe number of eigenvalues in
reases as shown Figure 1. If a large number of eigenvalues andeigenve
tors are required, the thi
k-restart Lan
zos method may still need more workspa
e than14



some band-by-band versions of the CG method, however, it may a
tually need less workspa
e thansome implementations of all-band CG methods.6 Con
luding remarksIn this paper, we have given a pra
ti
al version of the thi
k-restart Lan
zos method for symmet-ri
 and Hermitian eigenvalue problems and des
ribed two restarting strategies that we found tobe e�e
tive. Through numeri
al examples, we have demonstrated that the thi
k-restart Lan
zosmethod uses less time than older versions of the Lan
zos method and the new method s
ales well asthe problem size in
reases. This method is well suited for 
omputing a large number of eigenvaluesand eigenve
tors of very large matri
es.Many ele
troni
 stru
ture 
al
ulations need to 
ompute solutions of a set of related eigenvalueproblems [13℄. In these 
ases, it is important to take advantage of the existing solutions whensolving the next eigenvalue problem. One way to do this is to use a linear 
ombination of theeigenve
tors from the previous step as the starting ve
tor for the Lan
zos method [1, 15℄. However,a version of dynami
 thi
k-restart Davidson method [18℄ might be more appropriate than the thi
k-restart Lan
zos method. Even in this 
ase, the restarting strategies des
ribed in this paper are stilluseful for the Davidson method.Through the study of the 
onvergen
e history, we 
on
lude that the thi
k-restart Lan
zosmethod 
an 
ompute all eigenve
tors of degenerate eigenvalues. There is no easy way to dete
t thatall eigenve
tors are found, however, the two strategies, 
omputing more eigenvalues and requiringmore a

ura
y, appear to work well in pra
ti
e.The Lan
zos method often needs more workspa
e than some versions of the CG method. How-ever, if there is a large amount of 
omputer memory available, it is worthwhile to let the thi
k-restartLan
zos method use more workspa
e as this often leads to less time being used. Clearly, the thi
k-restart Lan
zos method is not for every type of eigenvalue problem. However, in the 
ases where itis appropriate, for example, when tens of eigenvalues are required, when there is reasonable amountof spa
e to store some extra ve
tors (m � neig > 10), or when there isn't a large number of goodstarting ve
tors, we have demonstrated that the thi
k-restart Lan
zos is an e�e
tive method.7 A
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